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Abstract: Practitioners seeking a suitable mortality model for forecasting population 
by age and sex are presented with many possible choices from the large and 
growing academic literature on mortality forecasting. Despite this abundance, there 
is relatively little practical guidance on selecting the most appropriate models for 
their needs. This study evaluates the accuracy of mortality forecasting methods 
and provides guidance on model selection. The evaluation includes eight methods 
from the StMoMo and demography R packages, and a benchmark extrapolative 
method based on the Ediev (2008) model. We also consider the accuracy of simple 
combinations of individual methods. We evaluate models by preparing mortality 
‘forecasts’ for Australia for past periods using data obtained from the Human Mortality 
Database. For each method, we created five sets of 30-year retrospective forecasts 
and evaluated the accuracy of the forecast mortality rates, life expectancies at birth, 
and life expectancy at age 65. We also evaluated the accuracy of mortality forecasts 
in terms of projected total deaths calculated using a pseudo-projection method. The 
Age-Period-Cohort model from the StMoMo R package, based on the Cairns et al.
(2009) implementation, was the standout performer in our evaluation, followed by the 
benchmark extrapolative method. This study presents a comprehensive evaluation 
of mortality forecasting methods using a variety of metrics, including a new way to 
evaluate mortality forecasts using a pseudo-projection method. We hope that this 
evaluation proves useful for practitioners looking to select a mortality forecasting 
method.
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1 Introduction

Mortality forecasts are an essential input to any cohort-component forecast of 
a population. Mortality is nearly always the main demographic process affecting 
populations in the older age groups, and it is therefore particularly important that 
forecasts of older populations are as accurate as possible for applications including 
those related to pensions, health care, and aged care. An extensive and impressive 
body of academic literature on mortality forecasting methods has been developed 
over many decades (Basellini et al. 2023; Bengtsson/Keilman 2019). For practitioners, 
however, the preparation of high quality mortality forecasts remains challenging. 
Whilst an abundance of mortality forecasting models is described in the academic 
literature, there is limited guidance for practitioners on which models and tools are 
most appropriate for particular populations and which generate the most plausible 
and accurate forecasts. One of the most commonly used mortality forecasting 
models is the Lee-Carter method (Lee/Carter 1992), and there is a large body of work 
developing extensions to this model (Basellini et al. 2023). Several retrospective 
evaluations have shown that these Lee-Carter extensions perform better than the 
original model when forecasting death rates (Bergeron-Boucher/Kjærgaard 2022; 
Booth et al. 2006). Other evaluations have compared the accuracy of the Lee-Carter 
method with other methods, such as the Age-Period-Cohort (APC) model (Osmond 
1985), the Cairns-Blake-Dowd (CBD) model (Cairns et al. 2006), the Renshaw-
Haberman model (Renshaw/Haberman 2006), the coherent functional demographic 
model (CFDM: Hyndman et al. 2013), and the Plat model (Plat 2009). Devi Fokeer and 
Narsoo (2022) evaluated mortality forecast models for male mortality data from 
five countries and found that the Renshaw-Haberman, Lee-Carter and APC models 
performed best for 0-19-year-olds while the Plat model performed well for other 
age groups. 

Shang et al. (2011) evaluated ten variants and extensions of the Lee-Carter 
method using one-step ahead forecast errors on data from 14 countries. They found 
that the weighted Hyndman-Ullah method (Hyndman/Ullah 2007; Shang et al. 2011) 
produced the most accurate point forecasts of male and female mortality rates 
and of female life expectancy at birth, whereas the Lee-Miller method (Lee/Miller 
2001) performed best for male life expectancy at birth. The weighted Hyndman-
Ullah method performed best on the majority of datasets for female age-specific 
death rates (ASDRs) and life expectancy, while the Lee-Miller method excelled for 
the majority of datasets for male life expectancy. Shang et al. (2011) suggested 
the strong performance of the weighted Hyndman-Ullah method was linked to its 
emphasis on recent mortality trends in its forecasts. Shang (2015) investigated model 
performance for forecasting male and female mortality rates and life expectancies 
for males and females in 20 countries and found that the CFDM model performed 
well for males. Similarly, Li (2022) evaluated the accuracy of traditional statistical 
models, machine learning models, and combinations thereof (ensemble models) 
for forecasting death rates and life expectancies of older US males. They found that 
a stacked neural network approach to combining a diverse group of base models 
produced the best forecast. 
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Dowd et al. (2010) evaluated the accuracy and robustness of mortality 
forecasting methods using data for males aged 60-89 years in England and Wales. 
They considered several metrics, including how well forecasts converged to actual 
mortality rates as forecast horizons decreased, forecast accuracy across a range of 
forecast horizons, and mortality probability density forecasts. Model performance 
varied across metrics, with five models performing similarly (Lee-Carter, APC, CBD, 
and two variants of the CBD model). However, the Renshaw–Haberman model showed 
limited robustness in their evaluation. Terblanche (2015) conducted an evaluation of 
mortality forecasting methods for Australians aged 50-100 years of age and found 
the top performer to be the Ediev method (Ediev 2008). In the Booth et al. (2006) 
evaluation of the Lee-Carter method and its extensions for mortality forecasting, 
the authors found that the original Lee-Carter method did not perform as well as 
its variants in terms of mean error in forecasted logged death rates. However, this 
difference did not translate to differences in terms of forecast life expectancy. In 
summary, the literature on mortality forecast evaluations demonstrates how results 
often vary by dataset, jump-off year, and evaluation metric.

As discussed by Dowd et al. (2010), mortality models can be used to produce a 
range of variables, including age-specific-mortality rates, life expectancy at birth, 
and survival rates. Practitioners typically value criteria such as forecast accuracy, 
ease of implementation, accessibility of tools, computational efficiency, and the 
ability to generate forecasts across different horizons and demographic measures. 
Ease of use is a significant criterion for practitioners, and a key component of this is 
the availability of established, validated, and accessible tools. By focusing on models 
implemented in popular R packages such as StMoMo and demography, this study 
ensures that practitioners can readily adopt the methods evaluated here. Such 
tools are not only user-friendly, but also widely supported within the demographic 
forecasting community, enhancing their practical utility. Most evaluations focus 
on the accuracy of forecasts in terms of mortality rates or life expectancies. A key 
use case for mortality forecasts for demographers is in the production of accurate 
forecasts of population and deaths. However, relatively little work has been 
conducted to evaluate the accuracy of mortality forecasting models in terms of 
numbers of deaths, particularly for longer-term forecasts. A challenge in forecasting 
the number of deaths is that future exposures are unknown, and a robust population 
projection framework is often required alongside the mortality forecasting method. 
Exposures are relatively accurate for past periods, and retrospective evaluations can 
be conducted to provide valuable insights into potential errors in forecasted deaths.

Recent years have seen substantial developments in mortality forecasting 
methods and in the tools available to practitioners to create forecasts. However, 
model selection guidance for practitioners producing and using mortality forecasts 
in real-world settings remains limited. The aim of this paper is to evaluate the 
accuracy of the methods available in two of the most popular R packages used 
for mortality forecasts, StMoMo and demography, and simple combinations 
thereof, for forecasts of Australian national mortality data. By evaluating methods 
that are readily accessible and widely used through these packages, we aim to 
provide practical guidance for practitioners seeking effective and implementable 
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mortality forecasts. We use an Extrapolative Model, based on Ediev’s (2008) work, 
as a benchmark. A comparison of forecast accuracy for age-specific mortality rates, 
life expectancies at birth, and life expectancies at age 65 are presented. We also 
develop and evaluate a new method to evaluate the accuracy of mortality forecasts 
in terms of total deaths generated through a pseudo-projection method (described 
later). In summary, the key research aims of this paper are to:

1) evaluate mortality forecast models for Australia for up to 30 years out,

2) develop and evaluate a pseudo-projection method for evaluating forecasts in 
terms of projected numbers of deaths, and

3) provide guidance to practitioners.

We generated retrospective mortality forecasts for Australia over 30-year 
periods. The data, mortality models, and metrics are detailed in Section 2, with 
code and data available at https://github.com/irigrossman/Mortality_Projection_
Methods. Section 3 presents the results of the evaluation, which are then discussed 
in Section 4. Concluding remarks are made in Section 5. 

2 Methods

2.1 Data

Age-specific death rates (ASDRs) and age-specific populations-at-risk (Exposures) 
data for males and females in Australia from 1921–2020 for ages 0–110+ were 
downloaded from the Human Mortality Database (HMD 2023) using the hmd.mx 
function from the R demography package (Hyndman 2023). As the data at the 
highest ages was very sparse, we aggregated data for ages 105 years and above 
into 105+ groups for males and females separately. Even with this aggregation, rates 
at the oldest ages were atypical due to small populations. Atypical rates included 0s, 
rates greater than 1, infinite values, and undefined values (caused by division by 0). 
We employed a simple data cleaning procedure where values greater than 1 were 
set to 1. 0s, infinite, missing, and undefined values were replaced with the average 
of the surrounding values that were real numbers (up to 1 year before and after and 
up to 1 year older and younger – the smoothing window is smaller for edge cases). 
Whilst there are more sophisticated methods for anomalous data, such as fitting 
models within a Poisson framework, we selected this simple model to allow for 
consistency between models – as the model implementation functions handle these 
values differently (see Online Appendix A), and we wanted to ensure comparability 
across all models. ASDRs may also be greater than 1; however, by capping at 1, 
we aimed to decrease potential errors when encountering extreme values, and to 
support interpretability across age groups. The cleaned data was used to fit the 
models and evaluate the forecasts.

https://github.com/irigrossman/Mortality_Projection_
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Input data used for the pseudo-projections (described below) consisted of 
forecast ASDRs from each of the evaluated mortality models, actual births, and 
actual net overseas migration. Births were obtained from ABS Historical Population 
Statistics (ABS 2019) for most years and the ABS online Data Explorer tool, https://
explore.data.abs.gov.au/, for recent years. Age-sex-specific net overseas migration 
was calculated as residual cohort population change after accounting for deaths. 
Population estimates by sex and single years of age for 1971 onwards were sourced 
from the ABS publication ‘National State and Territory Population’ (ABS 2023), while 
earlier populations were obtained from the Australian Demographic Databank 
(Smith 2009). 

2.2 Packages and forecasting models: An overview

We evaluated methods available in the demography (Hyndman 2023) and StMoMo 
(Villegas et al. 2018) software packages, two of the most popular R packages for 
mortality forecasts. Demography includes a comprehensive set of functions to 
support data handling, demographic forecasting (including for fertility, migration, 
and mortality), forecast evaluation, visualisations, and life table functions (Hyndman 
2023). StMoMo is specifically focused on mortality forecasting and provides 
functions to support the implementation of a wide range of stochastic mortality 
forecast models. Both packages have significant flexibility in terms of how models 
are configured. Where possible, we use the default values when using the methods. 
Additionally, we created custom code for the Extrapolative Model (EM) which we 
used as a benchmark. EM is described in greater depth in the Forecast Methods 
section below. 

We evaluated nine individual mortality forecast models: the Lee-Carter model 
implemented in the demography package (LC_D, with ‘_D’ indicating the package), 
a modified version of it with automated base period selection (LC_Dc, where the ‘c’ 
indicates this modification), the Booth-Maindonald-Smith variant of the Lee-Carter 
model (BMS), the Coherent Functional Demographic Model (CFDM), the Lee-Carter 
model implemented in the StMoMo package (LC_S, with ‘_S’ indicating the package), 
the Age-Period-Cohort model (APC), the Cairns-Blake-Dowd model (CBD), the 
Plat model, and EM. We also considered three ensemble models. Each of these is 
described further in the following. Several methods available through the StMoMo 
Package were excluded from our evaluation, including the Renshaw and Haberman 
(2006) method due to known issues with its robustness (Cairns et al. 2009). The M6, 
M7, and M8 forecast methods were also excluded (Cairns et al. 2009) because they 
are better suited for higher ages rather than for the full age range (Plat 2009) and 
we wanted to avoid an over-representation of models that are not suited for the full 
age range in our analysis.

For each of the models, five sets of 30-year forecasts of ASDRs were created with 
the following jump-off years: 1950, 1960, 1970, 1980, and 1990. Forecast accuracy 
was evaluated at 1, 10, 20, and 30 years. We provided the full dataset, from 1921 up 
to each respective jump-off year, to all models. Several models − including BMS, 
LC_Dc, and EM − automatically select the optimal fitting period based on data 

https://explore.data.abs.gov.au/
https://explore.data.abs.gov.au/
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characteristics, resulting in fitting periods that may vary across the five forecasts. 
Including these models allows us to assess whether methods with adaptive fitting 
periods provide more accurate forecasts compared to those using a fixed fitting 
period.

2.3 The Lee-Carter Model and its variants

The Lee-Carter method and its variants are amongst the most popular models for 
producing forecasts of ASDRs. The original model by Lee and Carter (1992) involves 
modelling the log ASDR m as a function of age x and time t (equation 1):

ln[mx,t] = ax + bxkt + εx,t 

The right-hand side of the equation features an age-specific constant ax, which 
models the age-specific general pattern of mortality, kt, which models the main 
time trend of mortality, and an age-specific constant bx which modifies kt, thereby 
capturing whether the mortality rate at age x will be greater or less than the main 
trend (Booth et al. 2002). The error term relates to time-varying age-specific factors 
which are not otherwise captured by the model. A key benefit of the model is that 
it requires relatively few assumptions. However, it has several disadvantages. First, 
the Lee-Carter model does not consider cohort effects and may be a poor fit for 
datasets that display them (Plat 2009). Secondly, it considers ASDRs to be perfectly 
correlated as the time index variable kt is shared by all the age groups; this only 
allows for uniform shifts in mortality over time to be modelled across all ages.

We implemented several versions of the Lee-Carter model and its variants using 
both the Demography and StMoMo packages. The lca function was used to fit 
the Lee-Carter model to the base data using the demography package, with max.
age set to 105. We examined two variants of this model: LC_D, which used default 
settings, and LC_Dc, where chooseperiod was set to TRUE to allow for automated 
fitting period selection using Bai’s method, which is the default for the lca function. 
By default, the lca function sets the adjust parameter to dt, which scales the time 
component kt to match the total number of deaths. The lca function estimates 
model parameters using singular value decomposition (SVD) of the log mortality 
rates (Booth et al. 2003), consistent with the original Lee-Carter approach (Lee/Carter 
1992).

We also implemented the Lee-Carter model using the StMoMo package (LC_S) 
using the LC function with preset defaults. We then used the fit function to fit 
the model to the base data. In contrast to the SVD approach, the default StMoMo 
implementation employs Maximum Likelihood Estimation assuming that deaths 
follow a Poisson distribution. Other distribution variants can also be selected by the 
user (Villegas et al. 2025). The forecast function was used to generate forecasts 
for both the demography and StMoMo packages (Hyndman et al. 2023; Hyndman/
Khandakar 2008).

We also considered the Booth-Maindonald-Smith (BMS) methodology, an 
extension of the original Lee-Carter model proposed by Booth et al. (2002). The BMS 

(1)
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model improves the fit of the base model by identifying the best-fitting period and 
adjusting kt to fit the age-specific distribution of deaths. We used the bms function 
in the Demography package with max.age set to 105, keeping other parameters 
at their default values. The bms function is a wrapper for the lca function, with the 
adjust parameter set to dxt to fit kt to the age-specific distribution of deaths. 
The bms function will set the chooseperiod parameter to be TRUE and the 
breakmethod parameter – which determines the method used to determine the 
optimal fitting period – to bms, which is based on the method by Booth et al. (2002). 
While both LC_Dc and BMS involve automated fitting period selection, they differ 
in how the optimal periods are selected (Bai’s method is the default of lca and the 
bms method is the default for bms). Additionally, bms adjusts kt to match the age 
distribution of deaths, whilst, by default, the LC_D and LC_Dc methods will set the 
adjust parameter to dt and fit kt to total deaths. Thus, whilst both LC_Dc and BMS 
allow for automated base period selection, there are differences in how they are 
implemented, which leads to different results.

2.4 Coherent Functional Demographic Model

The CFDM by Hyndman et al. (2013) creates consistent forecasts for subpopulations 
(such as males and females), reducing the risk that forecasts for different subgroups 
diverge from each other. The method involves the calculation of the product and ratio 
of the smoothed ASDRs of the subpopulations. For example, if the subpopulations 
of interest are males and females, as in this study, the product is the geometric mean 
of the smoothed male and female death rates (or the square root of the smoothed 
male death rates multiplied by the smoothed female death rates), whilst the ratio is 
the square root of the ratio of the smoothed death rates. 

The product and ratio are modelled using functional time series models, which 
decompose the product and ratio into a set of weighted basis functions, with weights 
given by time varying coefficients. These coefficients are then forecast separately 
using ARIMA(p,q) models for the product and ARMA(p,q) or ARFIMA(p,d,q) models 
for the ratio. The forecast coefficients are then multiplied by the basis functions, 
thereby creating forecast curves for the product and ratios into the future. Each 
coefficient indicates the contribution of a basis function to the forecast death rate 
at each timepoint in the forecast horizon. The more basis functions included, the 
greater the potential complexity of the model. However, as more basis functions 
are included, there is a danger of the model overfitting the base period data. 
We implement the CFDM model using the coherentfdm function from the 
demography package.

2.5 The Age-Period-Cohort Model

The age-period-cohort (APC) mortality model is widely used for modelling age-
specific mortality rates as a function of age, period, and birth cohort and can be 
represented as:
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ln[mx,t] = αx + kt + γt − x 

where α, κ, and γ represent the age, period, and cohort effects on the logged 
mortality rate. In the StMoMo implementation of the method, several constraints 
are implemented such that the period effect across the time periods is 0 and the 
average cohort effect is 0 with no obvious linear trend (Villegas et al. 2018), based 
on the APC model implementation in Cairns et al. (2009). 

2.6 The CBD model

The CBD mortality forecast model (Cairns et al. 2006) can be expressed as:

In equation 3, the logit of the mortality rate is modelled such that:

• kt
(1) captures the period effect, which represents general changes in 

mortality occurring across ages, and

• kt
(2) (x - x̄ ) captures the age-specific effect, allowing time-dependent 

changes in mortality rates to be age-specific. Here, x represents the age 
being modelled at time t, and the mean age of the dataset is given by x̄ .

The CBD model was designed primarily for modelling the 60+ mortality curve, 
relying on the assumption that cohort effects are linear for the logit transformed 
mortality rate. This assumption holds better for older ages than for younger ages. 
Because of the substantial decline in mortality at older ages in Australia, and given 
the popularity of the method, we felt that it was appropriate to include it as part of a 
comprehensive evaluation of available mortality forecasting methods. However, the 
results need to be interpreted with caution given that it is being applied outside its 
original design. Additionally, due to this application outside its original design, the 
CBD method was excluded from the ensemble models described below.

The CBD model typically models 1qx, the probability of someone exactly x years 
of age dying before reaching age x + 1. Conversely, the other models evaluated in 
this paper model mx, the death rate, which is the ratio of the number of deaths 
occurring at age x during a year divided by the number of person-years lived during 
that year. However, qx and mx can be converted between each other as needed. 

To implement the CBD model, we define the model using the cbd function from 
StMoMo. We transform the input data from mx to qx to using the central2initial 
function and use this transformed data to fit the CBD model. We then create the 
forecast using the forecast function. To allow comparisons with the other models, 
we convert the output to mx. As is common practice (e.g., Thatcher et al. 1998), we 
approximate the death rates based on the probability of dying assuming a constant 
hazard within the age interval (i.e., exponential distribution):

(2)

logit�𝑞𝑞�,�� � �� �
𝑞𝑞�,�

1 �  𝑞𝑞�,�
�  �  𝜅𝜅�

��� � 𝜅𝜅�
��� �𝑥𝑥 �  �̅�𝑥�  (3)
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mx ≈ -ln(1 − qx)

2.7 The Plat model

The Plat model was built on prior mortality forecast models, with the goals of 
building a relatively simple model, able to forecast mortality across the full age 
range, include a non-trivial correlation structure, and model the cohort effect (Plat 
2009). The formula for the Plat model is: 

ln[mx,t] = αx + kt
(1) + kt

(2) (x − x̄ ) + kt
(3) (x̄  − x)+ + γt − x

The αx term represents the basic shape of the age-specific mortality curve from 
historical data. Kt

(1) models general changes in mortality that affect all ages. Kt
(2) 

(x − x̄ ) allows time dependent changes in mortality rates to vary by age, where x̄  
is the mean age. Kt

(3) (x̄  − x)+ models age-specific dynamics in mortality rates for 
younger ages, where the superscript ‘+’ indicates that the term only applies when x 
is less than the mean age. The cohort effect is modelled with γ(t − x).

To implement the Plat model, we use the StMoMo package to first define the Plat 
model using the plat function, with the default parameters. Then we fit it to the 
base data using the fit function and then use the forecast function to create the 
forecasts.

2.8 The Extrapolative Model (EM)

The Ediev (2008) mortality forecasting method extrapolates logged death rates and 
applies a set of adjustments and constraints to produce sensible forecasts. Optimal 
fitting periods are calculated for each age and sex group and long-term trajectories 
of mortality decline rates are estimated. Convergence parameters bridge the past 
and long-term mortality rates. The Ediev method was one of the top performers in 
Terblanche’s (2015) evaluation of mortality forecasting methods for Australia’s very 
elderly population. The original Ediev method used absolute deviation to determine 
the optimal fitting period. Terblanche (2015) proposed an Ediev model variant that 
identifies the optimal fitting period by selecting the base period associated with 
the lowest R2 value from linear regression, arguing that deviations are more volatile, 
complicating the selection of a unique fitting period. In the Terblanche (2015) 
evaluation, the two variants performed similarly, however, the R2 method performed 
marginally better in the rankings. The EM method used here is strongly influenced 
by the R2 variant of the Ediev method. It also incorporates important constraints that 
reflect demographic realities, ensuring that male ASDRs are greater than or equal 
to female ASDRs and that, after the age of 15 years, ASDRs do not decrease with 
increasing age – the ASDR of each successive age group is greater than or equal 
to that of the younger age group. This approach aligns with Ediev’s (2008) method, 
which applies adjustments to ensure that forecasts are plausible and enhance the 
model’s robustness, particularly for extended forecast horizons. A brief description 

(4)

(5)
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of the EM method is provided here, with the code provided in the supplementary 
materials.

1) Data Preparation. Input data was smoothed and ASDRs were extended to age 
110. The ASDRs at age 110 were set to 0.8 for females and 0.9 for males, based on a 
twenty-year average of Australian death rates at the highest ages. 

2) Linear Models Using Optimal Fitting Periods. Smoothed ASDRs were logged, 
and linear models fitted to determine the optimal fitting periods for each age and 
sex group, defined by the lowest R2 value, with a minimum fitting period of 20 years. 
The intercepts and slopes of the models fitted to the calculated optimal fitting 
periods were used to create a set logged ASDR projections without any adjustments. 
Slope values were heavily smoothed across ages and adjustments were applied so 
that ASDRs from age 15 years onwards did not decrease with increasing age. These 
heavily smoothed slope values are referred to as the ‘long-run slope values.’

3) Smoothing and Adjustments to Slope Values. The jump-off year ASDRs were 
smoothed to avoid a bumpy age profile in the final year of the base period. The 
long-run slope values were trended into the slope projections over 20 years and 
then smoothed.

4) Projections with Adjusted Slope. First, the logged ASDRs were projected again, 
this time using the logged and smoothed ASDRs from the jump-off year and the 
adjusted and smoothed forecast slope values. These adjusted projections were 
more closely aligned with the long-run trends in mortality in the base data. Taking 
the exponential of these projections generated a set of forecasted ASDRs which 
incorporated the slope adjustment. To ensure a smooth transition from the historical 
(base) data to our forecasts, we applied a jump-off year adjustment to better align 
the forecasted ASDRs with the historical data. The jump-off year adjusted forecasts 
were gradually merged with the slope-adjusted forecasted ASDRs over a period of 
50 years. This ensured a smooth transition from the adjusted initial ASDRs to the 
long-term mortality rates, aligning the forecasts with the jump-off data and the 
expected future trends.

5) Adjusting forecasted Male ASDRs. Male and Female ASDRs were forecast 
separately. Male ASDRs were then adjusted to ensure they were always greater or 
equal to the corresponding female ASDRs. 

6) Modifying forecast maximum age. While the forecasts extended to age 110 to 
incorporate calculated mortality rate determined for this age, forecasts were adjusted 
to age 105, which is the maximum age for this study due to data inconsistencies 
beyond this age. This was achieved by using life table calculations to aggregate 
death rates from ages 105 to 110+ into a 105+ category.

2.9 Ensemble models

The models selected for this study are known to perform variably across different 
datasets. Ensemble models, which are combinations of individual models, may 
be more reliable. Whilst ensemble models do not necessarily produce the best 
forecasts, they tend to produce fewer bad forecasts than individual models, a 
desirable property for demographic forecasting (Grossman et al. 2022). Whilst there 
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are many ways to combine forecasts, research has shown that the mean is a reliable 
and simple method (Grossman et al. 2022) and was thus chosen for this study. We 
test three ensemble models:

• D ensemble – an ensemble model created by taking the simple mean of 
three individual methods from the demography package: Lee-Carter, 
BMS, and CFDM.

• S ensemble – an ensemble model created by taking the simple mean of 
three individual methods from the StMoMo package: Lee-Carter, APC, and 
Plat.

• U ensemble – an ensemble model created by taking the simple mean of 
five unique methods evaluated in this study: Lee-Carter (LC_D), CFDM, 
APC, Plat, and EM.

2.10 Forecast evaluation measures 

At each forecast horizon, and for each model, the following metrics were used to 
evaluate forecast accuracy for ASDRs:

• The mean absolute error in forecast ASDRs over all ages (MAEd). The MAEd 
for year y is given as the average of the absolute difference between the 
actual ASDR (m) and the forecast ASDR for year y across all age groups (x), 
expressed as:

• The absolute error in forecasting life expectancies at birth and at age 65, e0 
and e65 respectively. These metrics were calculated using the lifetable 
function in the demography package to create forecasted life tables and 
life expectancy forecasts, using the forecast ASDRs. The absolute error in 
forecasting life expectancy at birth (AEe(0)) is given in equation 7, which 
takes the absolute value of the difference between actual life expectancy 
at birth for year y and forecast life expectancy at birth for year y. Similarly, 
equation 8 represents the calculation of the absolute error in the forecast 
life expectancy at age 65 (AEe(65)). e0 and e65 are both measured in years, 
thereby giving us an easy-to-understand metric:

AEY
e(0) = | Actual e0,y − Forecast e0,y |

AEY
e(65) = | Actual e65,y − Forecast e65,y |

𝑀𝑀𝑀𝑀𝑀𝑀�� �  
1
𝑛𝑛
� |𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑚𝑚�,� �  𝑀𝑀𝐹𝐹𝐹𝐹𝐴𝐴𝐹𝐹𝐴𝐴 𝑚𝑚�,�|

�

���
  (6)

(7)

(8)
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• Absolute Percentage Error in Projected Total Deaths (APEY
TD). To evaluate 

performance in terms of total deaths, as calculated using the pseudo 
projection method (described below), we calculate the absolute percentage 
error in projected total deaths (equation 9). A percentage-based metric 
was selected because the population can change significantly over time, 
and it normalises errors relative to population size:

For each metric, we calculate TOTm, which represents the average summed error 
across the five sets of projections with the different jump-off years, as defined by 
equation 10. We also present a central measure of forecast error, Avm (equation 11), 
which is the average error across the forecast horizon, averaged over the forecasts 
with the different jump-off years.

Here, m denotes the specific error metric being aggregated. k is the number of 
forecasts considered for each model, set at five for this study to correspond to the 
five jump-off years, and h is the maximum forecast horizon. As an example, let us 
consider the process of calculating TOTe(0) and , the total and central errors for life 
expectancy at birth (e0), for two three-year forecasts by the same model, with jump-
off years y1 and y2. Let us assume errors for years 1 to 3 are 0.5 years, 1.2 years and 
1.3 years for the first forecast, and 0.2 years, 1.3 years, and 1.2 years for the second. 
Thus, 

whilst

By compiling and averaging errors from forecasts across multiple forecast 
periods and across the entire forecasting window, TOTm and Avm serve as indicators 
of the model’s capacity to generate accurate forecasts over time and under different 
scenarios.

𝐴𝐴𝐴𝐴𝐴𝐴���  � �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷 � �  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴 𝐷𝐷�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷 �
� � 100  (9)
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2.11 Pseudo-Projection Method

A key contribution of this study is the introduction of the pseudo-projection 
method, which evaluates mortality ‘projections’ over past periods in terms of their 
impact on total deaths. The pseudo-projection method uses a standard cohort-
component model (Wilson/Rees 2021) with forecast deaths, but observed historical 
data for fertility and migration. This substitution isolates the impact of mortality 
forecast errors on total deaths, allowing us to evaluate model performance for a 
key demographic outcome without interference from errors in fertility or migration. 
The term ‘pseudo’ reflects this deliberate replacement of actual deaths with forecast 
deaths, distinguishing the method from a full population projection.

To calculate total deaths for the pseudo-projections, forecast ASDRs are 
combined with observed births and observed net overseas migration to produce 
a population projection. The resulting total deaths represent what would have 
occurred if mortality had been forecast imperfectly, but fertility and migration had 
remained as observed. This method allows us to assess the implications of mortality 
forecast errors in terms of total deaths, providing a straightforward and intuitive 
measure which offers a practical evaluation tool for practitioners, particularly those 
using mortality forecasts to inform planning and decision-making.

By linking forecast mortality rates to total deaths, the pseudo-projection method 
highlights that strong performance in traditional metrics does not necessarily 
translate to accuracy in key demographic outcomes. This evaluation underscores 
the importance of considering total deaths as an independent metric to assess the 
practical implications of mortality forecast errors.

3 Results

3.1 Mean absolute error for forecast ASDRs over all ages

Table 1 presents the MAEd for males across the ages of 0-105, while Table 2 presents 
equivalent results for females. For males, there were considerable differences 
between jump-off years. If we focus on the mean measures, the APC and Plat 
models are the standout performers, particularly for longer forecast horizons. The 
EM and the StMoMo ensemble also performed well across horizons, while the Lee-
Carter models had higher errors overall. For females, little separates the forecast 
errors for shorter horizons. However, over longer horizons, the performance of 
the CFDM model was poor, whilst EM, APC and the StMoMo ensemble performed 
well. The latter three models were also the top performers in terms of the TOT 
metric. The D ensemble model did not perform particularly well, nor did the StMoMo 
implementation of the Lee-Carter model (LC_S). Figure 1 presents the average 
MAEd for different forecast horizons by sex, depicting how mean absolute errors in 
forecast ASDRs change with time and between males and females.
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Tab. 1: Mean absolute forecast error of ASDRs, across ages 0-105 for males

Jump-off demography StMoMo ensemble models
year EM LC_D LC_Dc C FDM BMS LC_S APC CBD Plat D S U

Point forecast errors after 1 year
1950 0.014 0.015 0.024 0.015 0.017 0.017 0.022 0.050 0.026 0.015 0.016 0.013
1960 0.014 0.027 0.026 0.010 0.019 0.019 0.015 0.036 0.021 0.019 0.010 0.008
1970 0.021 0.017 0.019 0.016 0.019 0.018 0.024 0.029 0.021 0.017 0.021 0.019
1980 0.013 0.060 0.012 0.010 0.025 0.017 0.015 0.019 0.014 0.028 0.014 0.015
1990 0.013 0.022 0.015 0.015 0.014 0.012 0.014 0.022 0.013 0.009 0.013 0.011
mean 0.015 0.028 0.019 0.013 0.019 0.016 0.018 0.031 0.019 0.018 0.015 0.013

Point forecast errors after 10 years
1950 0.030 0.054 0.064 0.029 0.058 0.051 0.017 0.022 0.020 0.047 0.013 0.020
1960 0.016 0.061 0.053 0.031 0.047 0.046 0.018 0.019 0.024 0.046 0.017 0.020
1970 0.026 0.028 0.028 0.022 0.037 0.029 0.030 0.022 0.022 0.029 0.026 0.025
1980 0.013 0.093 0.011 0.012 0.044 0.028 0.014 0.014 0.015 0.049 0.017 0.026
1990 0.018 0.031 0.025 0.029 0.024 0.019 0.023 0.020 0.017 0.019 0.018 0.017
mean 0.021 0.053 0.036 0.025 0.042 0.035 0.020 0.020 0.020 0.038 0.018 0.022

Point forecast errors after 20 years
1950 0.044 0.127 0.132 0.064 0.134 0.113 0.021 0.023 0.021 0.108 0.039 0.047
1960 0.022 0.123 0.099 0.054 0.097 0.092 0.021 0.032 0.016 0.091 0.036 0.042
1970 0.033 0.045 0.035 0.032 0.059 0.046 0.031 0.049 0.023 0.045 0.033 0.033
1980 0.022 0.113 0.035 0.025 0.043 0.023 0.020 0.022 0.020 0.052 0.017 0.021
1990 0.011 0.042 0.022 0.025 0.025 0.013 0.020 0.015 0.018 0.017 0.010 0.011
mean 0.027 0.090 0.064 0.040 0.072 0.057 0.023 0.028 0.020 0.063 0.027 0.031

Point forecast errors after 30 years
1950 0.056 0.257 0.249 0.117 0.271 0.216 0.021 0.078 0.023 0.215 0.080 0.090
1960 0.027 0.199 0.149 0.075 0.156 0.144 0.017 0.069 0.016 0.143 0.053 0.062
1970 0.025 0.044 0.023 0.023 0.063 0.044 0.018 0.063 0.025 0.043 0.019 0.020
1980 0.016 0.165 0.029 0.017 0.065 0.036 0.016 0.046 0.017 0.080 0.014 0.035
1990 0.012 0.057 0.022 0.025 0.028 0.020 0.019 0.036 0.035 0.022 0.014 0.016
mean 0.027 0.144 0.094 0.051 0.117 0.092 0.018 0.058 0.023 0.101 0.036 0.045

Cumulative forecast errors after 30 years, averaged over the five forecasts
TOTd 0.674 2.328 1.575 0.968 1.831 1.483 0.565 0.869 0.555 1.621 0.700 0.823

Average forecast errors after 30 years, averaged over the five forecasts
Avm 0.022 0.078 0.053 0.032 0.061 0.049 0.019 0.029 0.019 0.054 0.023 0.027

Notes: Point forecast errors refer to the difference between the actual and forecast values 
for specific years. Point errors are reported for 1-, 10-, 20-, and 30-year forecast horizons, for 
each jump-off year. Mean errors across jump-off years are presented for each of the evaluated 
forecast horizons. The TOT metric is the average of the cumulative errors over the 30-year 
forecast horizon, for the five evaluated forecasts for the five jump-off years. The Av metric is 
equal to the TOT metric divided by the forecast horizon, providing a central measure of error 
across the forecast horizon.
Abbreviations: EM – extrapolative smoothing model, LC_D – Lee-Carter model from the 
demography package, LC_Dc Lee-Carter model from the demography package with 
automated base period selection, CFDM – coherent functional demographic model, LC_S 



A Practitioner-Oriented Evaluation of Mortality Forecasting Methods: The Case of Australia    • 109

– the StMoMo implementation of the Lee-Carter model, APC – Age-period-cohort model, 
CBD – Cairns-Blake-Dowd model, Plat – Plat model, D – demography ensemble, S – StMoMo 
ensemble, U – unique ensemble.
Source: Authors’ calculations based on HMD (2023).

Tab. 2: Mean absolute forecast error of ASDRs, across ages 0-105 for females

Jump-off demography StMoMo ensemble models
year EM LC_D LC_Dc CFDM BMS LC_S APC CBD Plat D S U

1-year forecast horizon
1950 0.020 0.013 0.012 0.013 0.013 0.016 0.018 0.053 0.015 0.013 0.015 0.013
1960 0.013 0.012 0.008 0.009 0.011 0.008 0.007 0.033 0.007 0.010 0.006 0.007
1970 0.013 0.014 0.014 0.013 0.014 0.014 0.016 0.027 0.013 0.014 0.014 0.013
1980 0.008 0.014 0.008 0.009 0.007 0.010 0.009 0.014 0.009 0.009 0.009 0.009
1990 0.008 0.008 0.009 0.009 0.009 0.007 0.006 0.013 0.005 0.008 0.006 0.007
mean 0.012 0.012 0.010 0.011 0.011 0.011 0.011 0.028 0.010 0.011 0.010 0.010

10-year forecast horizon
1950 0.031 0.054 0.053 0.072 0.053 0.050 0.023 0.015 0.027 0.060 0.033 0.041
1960 0.017 0.016 0.013 0.019 0.014 0.013 0.011 0.021 0.014 0.016 0.011 0.008
1970 0.012 0.023 0.011 0.023 0.023 0.018 0.019 0.010 0.006 0.023 0.013 0.016
1980 0.008 0.012 0.006 0.010 0.009 0.005 0.006 0.006 0.011 0.006 0.005 0.005
1990 0.011 0.012 0.017 0.020 0.018 0.013 0.017 0.013 0.021 0.016 0.016 0.015
mean 0.016 0.023 0.020 0.029 0.023 0.020 0.015 0.013 0.016 0.024 0.016 0.017

20-year forecast horizon
1950 0.019 0.056 0.054 0.092 0.055 0.050 0.011 0.020 0.010 0.068 0.018 0.033
1960 0.008 0.038 0.026 0.054 0.036 0.021 0.009 0.020 0.008 0.042 0.008 0.019
1970 0.008 0.025 0.014 0.030 0.025 0.018 0.012 0.028 0.012 0.027 0.007 0.013
1980 0.016 0.016 0.018 0.018 0.021 0.013 0.019 0.011 0.032 0.014 0.020 0.015
1990 0.009 0.012 0.017 0.021 0.019 0.011 0.021 0.008 0.029 0.016 0.019 0.016
mean 0.012 0.029 0.026 0.043 0.031 0.023 0.014 0.017 0.018 0.033 0.015 0.019

30-year forecast horizon
1950 0.035 0.100 0.096 0.163 0.098 0.091 0.012 0.073 0.012 0.120 0.037 0.064
1960 0.010 0.044 0.028 0.072 0.041 0.020 0.007 0.043 0.014 0.053 0.003 0.020
1970 0.013 0.022 0.026 0.031 0.022 0.017 0.008 0.044 0.031 0.025 0.013 0.010
1980 0.016 0.017 0.017 0.016 0.021 0.012 0.023 0.027 0.039 0.012 0.022 0.015
1990 0.007 0.013 0.015 0.020 0.017 0.010 0.021 0.026 0.031 0.014 0.018 0.013
mean 0.016 0.039 0.036 0.061 0.040 0.030 0.014 0.043 0.026 0.045 0.019 0.024

Cumulative forecast errors after 30 years, averaged over the five forecasts
TOTd 0.380 0.758 0.658 1.039 0.768 0.590 0.391 0.644 0.500 0.819 0.410 0.488

Average forecast errors after 30 years, averaged over the five forecasts
Avm 0.013 0.025 0.022 0.035 0.026 0.020 0.013 0.021 0.017 0.027 0.014 0.016

Notes: Point forecast errors refer to the difference between the actual and forecast values 
for specific years. Point errors are reported for 1-, 10-, 20-, and 30-year forecast horizons, for 
each jump-off year. Mean errors across jump-off years are presented for each of the evaluated 
forecast horizons. The TOT metric is the average of the cumulative errors over the 30-year 
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3.2 Error for forecast life expectancy at birth

Tables 3 and 4 present the absolute error in forecasting life expectancy at birth, 
AEe(0), for males and females, respectively. Actual life expectancies are presented 
in the lefthand columns of the tables. The AEe(0) is presented for each model, each 
evaluated jump-off year, and forecast horizon. For males, the APC model is the 

forecast horizon, for the five evaluated forecasts for the five jump-off years. The Av metric is 
equal to the TOT metric divided by the forecast horizon, providing a central measure of error 
across the forecast horizon.
Abbreviations: EM – extrapolative smoothing model, LC_D – Lee-Carter model from the 
demography package, LC_Dc Lee-Carter model from the demography package with 
automated base period selection, CFDM – coherent functional demographic model, LC_S 
– the StMoMo implementation of the Lee-Carter model, APC – Age-period-cohort model, 
CBD – Cairns-Blake-Dowd model, Plat – Plat model, D – demography ensemble, S – StMoMo 
ensemble, U – unique ensemble.
Source: Authors’ calculations based on HMD (2023).

Fig. 1: Mean absolute error in forecast ASDRs over all ages, averaged across 
models, by forecast horizon
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Notes: The figure presents mean absolute error in forecast ASDRs over all ages (MAEd), 
averaged across jump-off years and across models. Error bars represent 95% confidence 
intervals of the model errors.
Source: Authors’ calculations based on HMD (2023).
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Tab. 3: Absolute error for life expectancy at birth forecasts for males

Jump-off demography StMoMo ensemble models
year Actual EM LC_D LC_Dc C FDM BMS LC_S APC CBD Plat D S U

1-year forecast horizon
1950 66.08 0.60 0.48 0.57 0.85 0.58 0.62 0.74 0.41 0.70 0.63 0.69 0.67
1960 68.04 0.25 0.35 0.39 0.28 0.11 0.09 0.30 0.13 0.14 0.02 0.12 0.05
1970 68.25 0.58 1.25 1.43 0.24 0.35 0.37 0.32 0.87 0.71 0.62 0.47 0.63
1980 71.30 0.26 1.12 0.02 0.45 1.16 0.81 0.24 0.02 0.11 0.19 0.24 0.10
1990 74.48 0.77 0.45 0.25 0.67 0.20 0.71 0.08 0.23 0.39 0.15 0.40 0.30

mean 0.49 0.73 0.53 0.50 0.48 0.52 0.34 0.33 0.41 0.32 0.38 0.35

10-year forecast horizon
1950 67.95 0.06 0.06 0.43 0.73 0.03 0.10 0.88 0.73 0.55 0.23 0.50 0.40
1960 67.43 1.68 2.00 1.81 1.81 1.55 1.59 2.93 1.12 2.18 1.79 2.21 2.11
1970 71.09 2.42 3.26 4.23 1.78 2.38 2.40 1.53 3.27 2.66 2.48 2.20 2.34
1980 73.98 1.84 0.91 1.65 2.19 3.10 2.66 0.55 2.10 1.79 2.09 1.70 1.48
1990 76.95 1.15 1.14 0.82 1.73 0.26 2.16 0.44 2.11 1.89 1.07 1.53 1.29

mean 1.43 1.48 1.79 1.65 1.46 1.78 1.27 1.87 1.81 1.53 1.63 1.52

20-year forecast horizon
1950 67.43 1.68 1.61 0.87 2.59 1.70 1.79 3.93 0.28 2.56 1.96 2.72 2.44
1960 71.09 0.71 0.76 1.14 0.41 1.19 1.13 1.70 2.05 0.60 0.79 0.10 0.22
1970 73.98 4.31 5.38 7.09 3.44 4.53 4.55 2.46 5.81 5.19 4.47 4.12 4.20
1980 76.95 3.68 3.29 3.54 3.95 5.38 4.85 1.29 4.60 4.00 4.23 3.48 3.30
1990 79.80 1.97 3.12 1.76 2.89 0.77 4.00 0.86 4.46 3.89 2.34 3.04 2.63

mean 2.47 2.83 2.88 2.66 2.71 3.26 2.05 3.44 3.25 2.76 1.63 1.52

30-year forecast horizon
1950 71.09 0.92 1.15 2.17 0.02 1.08 0.97 3.00 3.10 0.26 0.76 0.43 0.01
1960 73.98 2.51 2.96 3.47 2.13 3.35 3.28 1.31 4.63 3.55 2.83 2.08 2.13
1970 76.95 6.43 7.70 10.03 5.38 6.90 6.91 3.37 8.56 8.40 6.68 6.40 6.37
1980 79.80 5.47 5.64 5.38 5.72 7.64 7.02 1.72 7.11 6.39 6.38 5.28 5.13
1990 81.62 1.96 4.13 1.83 3.07 0.54 4.87 0.08 5.88 5.03 2.73 3.66 3.09

mean 3.46 4.32 4.57 3.26 3.90 4.61 1.90 5.86 4.73 3.87 3.57 3.35

Cumulative forecast errors after 30 years, averaged over the five forecasts
TOTe(0) 55.0 64.1 68.2 59.4 60.2 72.7 43.0 81.4 73.9 60.7 61.4 57.4

Average forecast errors after 30 years, averaged over the five forecasts
Avm 1.83 2.14 2.27 1.98 2.01 2.42 1.43 2.71 2.46 2.02 2.05 1.91

Notes: Actual life expectancies are presented in the second column from the left. If the jump-
off year is 1970 and the forecast horizon is 10 years, the relevant cell will show the estimated 
life expectancy at birth for 1980. The 12 rightmost columns present the absolute error in years 
of the life expectancy forecasts for the 12 evaluated models for each of the evaluated jump-off 
years and forecast horizons. The mean of the absolute errors across jump-off years for each 
evaluated forecast horizon are also presented. The TOT metric is the average of the cumulative 
errors over the 30-year forecast horizon, for the five evaluated forecasts and the five jump-off 
years. The Av metric is equal to the TOT metric divided by the forecast horizon, providing a 
central measure of error across the forecast horizon.
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Abbreviations: EM – extrapolative smoothing model, LC_D – Lee-Carter model from the 
demography package, LC_Dc Lee-Carter model from the demography package with 
automated base period selection, CFDM – coherent functional demographic model, LC_S 
– the StMoMo implementation of the Lee-Carter model, APC – Age-period-cohort model, 
CBD – Cairns-Blake-Dowd model, Plat – Plat model, D – demography ensemble, S – StMoMo 
ensemble, U – unique ensemble.
Source: Authors’ calculations based on HMD (2023).

Tab. 4: Absolute error for life expectancy at birth forecasts for females

Jump-off demography StMoMo ensemble models
year Actual EM LC_D LC_Dc C FDM BMS LC_S APC CBD Plat D S U

1-year forecast horizon
1950 71.59 0.23 0.37 0.40 0.17 0.28 0.31 0.18 0.19 0.38 0.16 0.29 0.20
1960 74.51 0.41 0.16 0.10 0.75 0.56 0.49 0.13 0.53 0.23 0.38 0.29 0.28
1970 74.89 0.42 0.40 0.55 0.71 0.61 0.57 0.18 0.82 0.53 0.57 0.43 0.45
1980 78.43 0.25 0.55 0.08 0.86 0.06 0.22 0.17 0.03 0.01 0.13 0.02 0.08
1990 80.50 0.60 0.21 0.16 0.51 0.13 0.29 0.01 0.14 0.15 0.15 0.15 0.21

mean 0.38 0.34 0.26 0.60 0.33 0.38 0.13 0.34 0.26 0.28 0.24 0.24

10-year forecast horizon
1950 74.05 0.92 0.57 0.72 1.78 0.65 0.60 0.13 1.72 0.08 1.01 0.27 0.71
1960 74.17 1.94 1.85 1.77 0.41 1.14 1.24 2.48 0.39 2.19 1.13 1.95 1.74
1970 78.22 2.28 2.58 2.71 3.29 2.77 2.70 1.45 3.74 2.08 2.88 2.10 2.36
1980 80.15 0.70 0.01 0.30 2.11 0.13 0.66 0.72 1.21 0.37 0.78 0.09 0.41
1990 82.27 0.49 0.39 0.12 1.26 0.13 0.79 0.51 1.47 0.03 0.53 0.14 0.38

mean 1.27 1.08 1.12 1.77 0.96 1.20 1.06 1.70 0.95 1.27 0.91 1.12

20-year forecast horizon
1950 74.17 0.18 0.65 0.36 0.79 0.59 0.67 2.34 1.53 1.46 0.14 1.45 0.71
1960 78.22 0.13 0.95 1.04 2.79 1.65 1.50 1.21 3.24 0.06 1.81 0.18 0.64
1970 80.15 2.72 3.39 3.45 4.48 3.57 3.45 0.80 5.36 2.55 3.82 2.38 2.90
1980 82.27 1.53 0.96 0.86 3.49 0.52 1.50 1.32 2.95 0.03 1.75 0.26 1.17
1990 84.20 0.50 1.14 0.20 1.90 0.27 1.42 1.30 3.02 0.52 0.97 0.37 0.70

mean 1.01 1.42 1.18 2.69 1.32 1.71 1.39 3.22 0.93 1.70 0.93 1.22

30-year forecast horizon
1950 78.22 2.85 2.31 2.72 3.92 2.37 2.26 1.13 5.47 1.67 2.88 1.07 2.09
1960 80.15 0.29 1.83 1.91 4.00 2.51 2.32 2.37 4.93 0.61 2.80 0.45 1.17
1970 82.27 3.47 4.53 4.49 5.94 4.70 4.54 0.06 7.30 4.50 5.07 3.33 4.00
1980 84.20 2.25 1.84 1.30 4.74 0.80 2.26 2.34 4.61 1.48 2.62 0.90 2.09
1990 85.69 0.26 1.57 0.02 2.14 0.67 1.72 2.70 4.25 1.67 1.11 0.60 0.92

mean 1.82 2.42 2.09 4.15 2.21 2.62 1.72 5.31 1.99 2.90 1.27 2.05

Cumulative forecast errors after 30 years, averaged over the five forecasts
TOT 31.4 35.2 32.0 67.5 32.0 38.8 33.9 76.8 26.6 42.5 22.2 30.3

Avm 1.05 1.17 1.07 2.25 1.07 1.29 1.13 2.56 0.89 1.42 0.74 1.01

Notes: Actual life expectancies are presented in the second column from the left. If the jump-
off year is 1970 and the forecast horizon is 10 years, the relevant cell will show the estimated 
life expectancy at birth for 1980. The 12 rightmost columns present the absolute error in years 
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standout performer, with the difference particularly evident for the 30-year forecast 
horizon. When we consider the TOT metric, EM is the second-best performer and 
CFDM also performs reasonably well. Conversely, CBD performs poorly. For females, 

of the life expectancy forecasts for the 12 evaluated models for each of the evaluated jump-off 
years and forecast horizons. The mean of the absolute errors across jump-off years for each 
evaluated forecast horizon are also presented. The TOT metric is the average of the cumulative 
errors over the 30-year forecast horizon, for the five evaluated forecasts and the five jump-off 
years. The Av metric is equal to the TOT metric divided by the forecast horizon, providing a 
central measure of error across the forecast horizon.
Abbreviations: EM – extrapolative smoothing model, LC_D – Lee-Carter model from the 
demography package, LC_Dc Lee-Carter model from the demography package with 
automated base period selection, CFDM – coherent functional demographic model, LC_S 
– the StMoMo implementation of the Lee-Carter model, APC – Age-period-cohort model, 
CBD – Cairns-Blake-Dowd model, Plat – Plat model, D – demography ensemble, S – StMoMo 
ensemble, U – unique ensemble.
Source: Authors’ calculations based on HMD (2023).

Fig. 2: Mean absolute error in forecasted life expectancy at birth, averaged 
across models, by forecast horizon
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Notes: This figure visualises the mean absolute error in forecasted life expectancy at birth, 
averaged across jump-off years and then across models. Error bars represent 95% confidence 
intervals of the model errors.
Source: Authors’ calculations based on HMD (2023).
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when we consider the TOT metric, the Plat and EM models were the top performers, 
whilst the CFDM and CBD models were the worst performers. 

The AEe(0) is greater for males than for females, with similar variance in model 
performance (Fig. 2). Across the models and jump-off years, the average AEe(0) for a 
30-year forecast horizon increases from 1.60 years for a 10-year forecast horizon to 
3.95 years for males and from 1.20 years for a 10-year forecast horizon to 2.55 years 
for a 30-year horizon.

3.3 Error for forecasted life expectancy at age 65

Tables 5 and 6 present the absolute error in life expectancy at age 65, AEe(65), for 
males and females. Actual life expectancies are presented in the lefthand columns, 
and the AEe(65) is presented for each model, each evaluated jump-off year, and each 
forecast horizon. When we consider the TOT metric, APC, EM, LC_Dc, and CFDM 
were the best performing models for males, whilst the APC, EM, Plat, and LC_Dc 
models were the best performing methods for females. The AEe(65) is greater for 
males than for females (Fig. 3). The average errors across the models and jump-off 
years increases from 0.98 years for a 10-year forecast horizon to 3.16 years for a 30-
year forecast horizon for males, and from 0.85 years for a 10-year forecast horizon 
to 2.21 years for a 30-year horizon for females.

3.4 Error for total projected deaths using the pseudo-projection method

The results of our evaluation using the pseudo-projections method are presented 
in Table 7. The TOTm metric is presented in the bottom row, whilst the absolute 
percentage errors between the actual and forecast number of total deaths is 
presented in the relevant cells for each of the models. The APC model was the top 
performer, particularly for the 20- and 30-year forecast horizons. The EM model was 
the second top performer according to the TOTm metric. If we consider the mean 
absolute percentage error in forecast total deaths using the pseudo-projection 
method across models and jump-off years, we find that it increases from 1.7 percent 
for a forecast horizon of 1 year, to 8.4 percent  for a 10-year horizon, to 12.8 percent  
for a 20-year horizon, and to 17.7 percent  for a 30-year horizon.

3.5	 Age-specific	absolute	errors	in	forecast	ASDRs

The average absolute errors in the forecast ASDRs for males and females after 10, 
20 and 30 years are reported in Appendices B1-B6. Here, the average represents the 
mean value across the five forecasts produced for jump-off years 1950, 1960, 1970, 
1980, and 1990. In each table, the top model is bolded for each age group, whilst 
the worst performing model is shown in red. The APC model does not perform 
particularly well for the younger age groups and has few top performances for any 
age group for the 10- and 20-year forecast horizons. However, it performs very well 
relative to other models for age 50 and above for the 30-year forecast horizon. The 
EM model performs well across the age groups for the 10-, 20-, and 30-year forecast 
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Tab. 5: Absolute error for life expectancy at age 65 forecasts for males

Jump-off demography StMoMo ensemble models
year Actual EM LC_D LC_Dc C FDM BMS LC_S APC CBD Plat D S U

1-year forecast horizon
1950 12.10 0.22 0.20 0.12 0.31 0.20 0.21 0.04 1.24 0.10 0.24 0.12 0.17
1960 12.60 0.19 0.27 0.32 0.27 0.26 0.24 0.26 0.84 0.07 0.27 0.19 0.21
1970 12.47 0.34 0.17 0.12 0.06 0.18 0.19 0.61 0.28 0.38 0.14 0.40 0.32
1980 13.84 0.04 0.78 0.04 0.17 1.10 0.85 0.16 0.43 0.03 0.70 0.33 0.23
1990 15.45 0.47 0.73 0.14 0.27 0.13 0.83 0.25 0.20 0.21 0.38 0.43 0.39

mean 0.25 0.43 0.15 0.21 0.38 0.46 0.26 0.60 0.16 0.34 0.30 0.27

10-year forecast horizon
1950 12.51 0.21 0.23 0.38 0.12 0.23 0.21 0.02 0.24 0.19 0.12 0.14 0.11
1960 11.98 0.57 0.34 0.26 0.56 0.34 0.38 1.02 0.67 1.15 0.41 0.84 0.72
1970 13.76 1.56 1.46 1.41 1.10 1.48 1.49 1.21 1.70 1.14 1.35 1.29 1.30
1980 15.22 0.93 2.03 0.91 1.41 2.39 2.06 0.64 1.37 0.97 1.96 1.25 1.22
1990 17.05 0.97 1.96 0.71 1.15 0.42 2.00 0.69 1.65 1.75 1.21 1.51 1.33

mean 0.85 1.21 0.73 0.87 0.97 1.23 0.72 1.13 1.04 1.01 1.00 0.94

20-year forecast horizon
1950 11.98 0.41 0.26 0.05 0.77 0.26 0.30 1.58 0.73 0.85 0.43 0.90 0.76
1960 13.76 1.00 1.45 1.56 0.93 1.44 1.39 0.66 1.87 0.32 1.28 0.19 0.52
1970 15.22 2.90 2.94 2.87 2.29 2.97 2.97 1.63 3.84 2.22 2.74 2.29 2.41
1980 17.05 2.26 3.72 2.18 2.85 4.13 3.70 1.33 3.64 2.67 3.59 2.63 2.61
1990 19.01 1.80 3.52 1.56 2.16 0.99 3.49 1.03 3.87 3.59 2.29 2.82 2.51

mean 1.67 2.38 1.64 1.80 1.96 2.37 1.25 2.79 1.93 2.07 1.76 1.76

30-year forecast horizon
1950 13.76 1.23 1.55 1.83 0.90 1.55 1.49 1.59 3.37 0.24 1.34 0.14 0.54
1960 15.22 2.22 2.93 3.07 2.13 2.92 2.84 0.89 4.00 0.70 2.67 1.05 1.55
1970 17.05 4.58 4.79 4.70 3.87 4.82 4.82 2.35 6.29 4.36 4.51 3.91 4.04
1980 19.01 3.74 5.54 3.57 4.40 6.00 5.48 1.77 6.00 4.66 5.35 4.13 4.13
1990 20.57 2.27 4.67 2.04 2.72 1.23 4.57 0.65 5.67 5.21 3.01 3.79 3.33

mean 2.81 3.90 3.04 2.81 3.30 3.84 1.45 5.07 3.03 3.37 2.60 2.72

Cumulative forecast errors after 30 years, averaged over the five forecasts
TOT 37.7 55.6 38.5 39.0 45.7 55.4 26.6 65.4 43.0 47.0 39.5 39.0

Average forecast errors after 30 years, averaged over the five forecasts
Avm 1.3 1.9 1.3 1.3 1.5 1.8 0.9 2.2 1.4 1.6 1.3 1.3

Notes: Actual life expectancies are presented in the second column from the left. If the jump-
off year is 1970 and the forecast horizon is 10 years, then the relevant cell will show the 
estimated life expectancy at birth for 1980. The 12 rightmost columns present the absolute 
error in years of the life expectancy forecasts for the 12 evaluated models for each of the 
evaluated jump-off years and forecast horizons. The mean of the absolute errors across jump-
off years for each evaluated forecast horizon are also presented. TOT is the average cumulative 
error over the five 30-year forecasts and is presented at the bottom of the table. The Av metric 
is equal to the TOT metric divided by the forecast horizon, providing a central measure of error 
across the forecast horizon.
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Abbreviations: EM – extrapolative smoothing model, LC_D – Lee-Carter model from the 
demography package, LC_Dc Lee-Carter model from the demography package with 
automated base period selection, CFDM – coherent functional demographic model, LC_S 
– the StMoMo implementation of the Lee-Carter model, APC – Age-period-cohort model, 
CBD – Cairns-Blake-Dowd model, Plat – Plat model, D – demography ensemble, S – StMoMo 
ensemble, U – unique ensemble.
Source: Authors’ calculations based on HMD (2023).

Tab. 6: Absolute error for life expectancy at age 65 forecasts for females

Jump-off demography StMoMo ensemble models
year Actual EM LC_D LC_Dc C FDM BMS LC_S APC CBD Plat D S U

1-year forecast horizon
1950 14.66 0.11 0.07 0.05 0.06 0.06 0.08 0.19 0.99 0.12 0.02 0.13 0.08
1960 15.92 0.20 0.37 0.34 0.54 0.55 0.48 0.22 0.57 0.06 0.49 0.26 0.28
1970 16.17 0.32 0.47 0.40 0.51 0.53 0.46 0.57 0.16 0.28 0.50 0.44 0.43
1980 18.12 0.13 0.33 0.06 0.61 0.06 0.51 0.18 0.05 0.12 0.30 0.19 0.23
1990 19.32 0.46 0.32 0.07 0.39 0.07 0.43 0.20 0.27 0.03 0.26 0.20 0.27

mean 0.24 0.31 0.18 0.42 0.25 0.39 0.27 0.41 0.12 0.32 0.25 0.26

10-year forecast horizon
1950 15.76 0.82 0.78 0.84 1.23 0.80 0.76 0.26 1.21 0.28 0.94 0.44 0.69
1960 15.71 0.76 0.22 0.27 0.31 0.01 0.12 0.93 0.07 1.29 0.03 0.75 0.55
1970 18.02 1.54 1.97 1.78 2.28 2.03 1.93 1.50 2.63 0.75 2.09 1.42 1.63
1980 19.08 0.41 0.69 0.06 1.58 0.17 0.81 0.26 1.32 1.14 0.74 0.14 0.33
1990 20.57 0.56 0.90 0.16 1.07 0.01 0.94 0.11 1.71 0.73 0.68 0.07 0.38

mean 0.82 0.91 0.62 1.29 0.60 0.91 0.61 1.38 0.84 0.90 0.56 0.72

20-year forecast horizon
1950 15.71 0.58 0.48 0.58 1.10 0.49 0.43 0.93 2.20 0.65 0.69 0.35 0.16
1960 18.02 0.65 1.68 1.62 2.52 1.92 1.76 0.20 2.93 0.43 2.04 0.47 0.95
1970 19.08 1.89 2.65 2.32 3.22 2.72 2.56 0.88 4.29 0.08 2.87 1.29 1.86
1980 20.57 1.17 1.53 0.39 2.83 0.15 1.58 0.76 3.12 1.95 1.59 0.17 0.81
1990 21.92 0.63 1.51 0.24 1.61 0.07 1.46 0.88 3.23 1.57 1.06 0.16 0.42

mean 0.98 1.57 1.03 2.25 1.07 1.56 0.73 3.15 0.93 1.65 0.49 0.84

30-year forecast horizon
1950 18.02 2.70 2.53 2.68 3.30 2.55 2.46 0.40 5.38 0.75 2.80 1.05 1.92
1960 19.08 0.78 2.34 2.27 3.46 2.61 2.41 1.50 4.60 0.96 2.82 0.24 1.12
1970 20.57 2.66 3.77 3.30 4.58 3.84 3.64 0.12 6.32 0.11 4.07 1.52 2.51
1980 21.92 1.78 2.25 0.69 3.91 0.33 2.21 1.84 4.73 2.80 2.32 0.32 1.22
1990 23.21 0.71 2.09 0.30 2.05 0.17 1.95 2.11 4.69 1.98 1.42 0.31 0.52

mean 1.73 2.60 1.85 3.46 1.90 2.53 1.19 5.15 1.32 2.69 0.69 1.46

Cumulative forecast errors after 30 years, averaged over the five forecasts
TOT 25.9 38.3 26.2 55.1 28.7 38.4 19.6 72.8 25.2 40.2 13.4 22.1

Average forecast errors after 30 years, averaged over the five forecasts
Avm 0.9 1.3 0.9 1.8 1.0 1.3 0.7 2.4 0.8 1.3 0.4 0.7



A Practitioner-Oriented Evaluation of Mortality Forecasting Methods: The Case of Australia    • 117

Notes: Actual life expectancies are presented in the second column from the left. If the jump-
off year is 1970 and the forecast horizon is 10 years, then the relevant cell will show the 
estimated life expectancy at birth for 1980. The 12 rightmost columns present the absolute 
error in years of the life expectancy forecasts for the 12 evaluated models for each of the 
evaluated jump-off years and forecast horizons. The mean of the absolute errors across jump-
off years for each evaluated forecast horizon are also presented. TOT is the average cumulative 
error over the five 30-year forecasts and is presented at the bottom of the table. The Av metric 
is equal to the TOT metric divided by the forecast horizon, providing a central measure of error 
across the forecast horizon.
Abbreviations: EM – extrapolative smoothing model, LC_D – Lee-Carter model from the 
demography package, LC_Dc Lee-Carter model from the demography package with 
automated base period selection, CFDM – coherent functional demographic model, LC_S 
– the StMoMo implementation of the Lee-Carter model, APC – Age-period-cohort model, 
CBD – Cairns-Blake-Dowd model, Plat – Plat model, D – demography ensemble, S – StMoMo 
ensemble, U – unique ensemble.
Source: Authors’ calculations based on HMD (2023).

Fig. 3: Mean absolute error in forecasted life expectancy at age 65, averaged 
across models, by forecast horizon
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Notes: This figure visualises the mean absolute error in forecasted life expectancy at age 65, 
which has been averaged across jump-off years and then across models. Error bars represent 
95% confidence intervals. 
Source: Authors’ calculations based on HMD (2023).
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Tab. 7: Absolute percentage error in projected total deaths using the pseudo-
projection method

Jump-off demography StMoMo ensemble models
year EM LC_D LC_Dc CFDM BMS LC_S APC CBD Plat D S U

1-year forecast horizon
1950 2.71 2.83 2.55 2.50 2.83 3.07 3.56 1.40 3.25 2.72 3.29 2.97
1960 0.32 1.15 1.02 2.54 1.71 1.23 2.21 0.06 1.86 1.03 0.94 0.47
1970 0.09 1.41 1.69 0.48 0.08 0.16 0.04 2.45 0.51 0.34 0.11 0.27
1980 0.30 0.71 0.97 4.19 5.84 5.92 2.11 0.38 1.61 3.12 0.74 0.02
1990 4.18 0.84 0.29 3.23 0.71 5.29 0.71 1.87 0.14 1.13 1.58 1.54
mean 1.52 1.39 1.30 2.59 2.23 3.13 1.73 1.23 1.47 1.67 1.33 1.05

10-year forecast horizon
1950 1.61 0.76 2.26 1.43 0.72 0.40 5.37 11.39 2.83 0.99 2.56 0.83
1960 8.49 7.85 7.20 4.85 5.56 5.94 15.02 1.51 11.08 6.08 10.57 9.35
1970 16.07 18.95 20.90 16.88 17.51 17.34 7.38 29.65 14.38 17.79 13.16 14.85
1980 6.09 4.20 4.35 12.36 9.17 9.90 3.05 14.40 2.34 8.72 3.29 4.62
1990 5.45 9.13 3.91 11.40 1.02 12.65 0.68 19.64 8.19 7.32 7.37 7.16
mean 7.54 8.18 7.72 9.38 6.80 9.25 6.30 15.32 7.76 8.18 7.39 7.36

20-year forecast horizon
1950 4.28 4.84 2.61 4.28 4.89 5.23 17.61 6.04 9.73 4.64 10.64 7.92
1960 7.19 10.52 11.64 12.79 12.63 12.24 7.10 23.80 6.68 12.02 4.52 6.56
1970 16.60 21.21 24.79 18.97 19.74 19.55 1.84 32.20 19.01 20.02 13.97 15.98
1980 17.73 15.79 15.37 23.14 18.89 20.33 0.57 29.15 16.14 19.59 13.15 15.50
1990 5.99 13.57 5.79 13.47 1.56 16.09 2.60 26.29 15.18 9.89 10.39 9.84
mean 10.36 13.19 12.04 14.53 11.54 14.69 5.94 23.50 13.35 13.23 10.53 11.16

30-year forecast horizon
1950 13.66 13.67 16.60 14.17 13.62 13.26 10.14 24.98 10.92 13.87 5.61 9.32
1960 8.41 13.62 14.98 15.28 15.43 14.94 11.03 25.43 15.37 14.86 7.92 9.68
1970 25.14 31.28 36.01 29.05 29.91 29.61 4.00 41.12 38.87 30.17 25.66 26.97
1980 20.71 20.00 18.55 25.53 22.05 23.36 3.80 31.12 27.04 22.99 17.42 19.72
1990 3.19 14.19 3.48 11.09 1.31 15.60 9.40 26.12 22.16 8.59 11.38 9.80
mean 14.22 18.55 17.92 19.02 16.46 19.35 7.67 29.75 22.87 18.10 13.60 15.10

Cumulative forecast errors after 30 years, averaged over the five forecasts
TOT 244.5 299.9 284.2 333.3 268.0 336.4 171.7 555.4 311.8 299.1 239.5 251.5

Average forecast errors after 30 years, averaged over the five forecasts
Avm 8.2 10.0 9.5 11.1 8.9 11.2 5.7 18.5 10.4 10.0 8.0 8.4

Notes: The 12 rightmost columns present the absolute percentage error in total deaths for the 
12 evaluated models for each of the evaluated jump-off years and forecast horizons. The mean 
of the errors across jump-off years for each evaluated forecast horizon are also presented. TOT 
is the average cumulative error over the five 30-year forecasts and is presented at the bottom 
of the table. The Av metric is equal to the TOT metric divided by the forecast horizon, providing 
a central measure of error across the forecast horizon.
Abbreviations: EM – extrapolative smoothing model, LC_D – Lee-Carter model from the 
demography package, LC_Dc Lee-Carter model from the demography package with 
automated base period selection, CFDM – coherent functional demographic model, LC_S 
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horizons for both males and females. CFDM performs poorly for older females (>50 
years). ASDRs for the 30-year forecast horizon, for the 1990 jump-off year are shown 
in Figures 4, 5 and 6 for the APC, CFDM, and EM models, respectively. CFDM exhibits 
atypical forecasts for the highest ages (Fig. 5). When considering the forecasts at 
the highest ages (100+), as detailed in Tables B1–B6, it is evident that some methods 
produced more sensible forecasts, such as the APC and EM models. Conversely, the 
CFDM and Lee-Carter models (LC_D and LC_S) often produced poor forecasts for 
the highest ages.

– the StMoMo implementation of the Lee-Carter model, APC – Age-period-cohort model, 
CBD – Cairns-Blake-Dowd model, Plat – Plat model, D – demography ensemble, S – StMoMo 
ensemble, U – unique ensemble.
Source: Authors’ calculations based on HMD (2023), ABS data (2019, 2023) and the Australian 

Demographic Data Bank (Smith 2009).

Fig. 4: Forecast ASDRs with the APC model for a 30-year forecast horizon, 
1990 jump-off

0.000001
0.00001

0.0001
0.001

0.01
0.1

1

0 50 100 150

ASDR

Age

Female

0.00001
0.0001

0.001
0.01

0.1
1

0 50 100 150
Age

Male
ASDR

APC ACTUAL

Source: Authors’ calculations based on HMD (2023).

Fig. 5: Forecast ASDRs with the CFDM model for a 30-year forecast horizon, 
1990 jump-off
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4 Discussion

4.1 Model Performance

Despite the variability of the results, there were three consistent findings: (1) the 
strong performance of the APC model, (2) the EM method’s robustness, and (3) the 
poor performance of the CBD method when implemented across a full age range. 
The APC model’s ability to capture cohort effects, in addition to age and period 
effects, may be a key factor in its strong performance, particularly for longer horizons 
and older age groups. Cohort-specific trends, such as health behaviours, medical 
advancements, and socio-economic factors, are important for understanding 
mortality trajectories. These cohort effects become more pronounced over longer 
forecast periods, aligning with the APC model’s theoretical strengths. Conversely, 
Dowd et al. (2010) found that the APC model performed similarly to other models for 
forecasting the mortality of older males in England and Wales in an evaluation which 
considered the stability of the forecasts with shifting forecast horizons (Dowd et al. 
2010). Devi Fokeer and Narsoo (2022) found that the APC model was most effective 
for ages 0-19, but performance was mixed for older ages for one year ahead mortality 
forecasts. In contrast, the Plat model, which also includes cohort effects, but uses 
a more detailed age-specific framework than the APC model, did not perform as 
well, particularly in forecasting total deaths using the pseudo-projection method. 
Specifically, the Plat model struggled with forecasting mortality rates for females 
aged 22-58, which likely contributed to its higher mean error of 22.9 percent in total 
death projections across the five 30-year forecasts from different jump-off years. 

Our research aligns with previous work that indicated that the EM model was 
one of the best performers in an evaluation of the accuracy of forecasted ASDRs for 
Australian populations aged 50-100 (Terblanche 2016). The EM model’s robustness 
may be linked to its incorporation of demographic constraints, such as ensuring 
that ASDRs do not decrease with increasing age after the age of 15 years, and that 
male ASDRs remain higher than or equal to female ASDRs. These assumptions 

Fig. 6: Forecast ASDRs with the EM model with a 30-year forecast horizon, 
1990 jump-off
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enhance the model’s reliability, particularly for extended horizons, and align well 
with demographic realities. The EM method has not been used widely and is rarely 
included in evaluations of mortality forecasting methods. The results of this study 
suggest that it would be worthwhile to consider it as a potential useful mortality 
forecasting method. Next, we consider that one of the consistent findings of our 
study was the poor performance of the CBD method. This is not unexpected, given 
that the method was designed to be applied for older ages, both in terms of the data 
used to fit the model and the ages for which the mortality forecasts were created. 
Practitioners should be aware that this method is not suitable for the full age range. 

Compared to other models, the CFDM method performed better for males 
than for females, where it was among the poorest performers. The CFDM method 
forecasts male and female data together – as products and ratios. Forecasts of male 
mortality generally have greater error than mortality forecasts for females. For 
example, in this study, the average error in forecast life expectancy at age 65, for a 30-
year forecast horizon, was 3.27 years for males compared to 2.39 years for females. 
The greater error in the male forecasts may increase the relative uncertainty of the 
female forecasts when using the CFDM method. These findings align with Booth 
(2020), who observed that coherent mortality forecasting methods like CFDM may 
produce less accurate forecasts for lower-mortality populations when combined 
with higher-mortality populations. Specifically, Booth noted that when male and 
female mortality data are modelled together, forecasts for the lower-mortality 
group, typically females, can be negatively influenced by trends in the higher-
mortality group. Bergeron-Boucher and Kjærgaard (2022) also found that symmetric 
mean absolute percentage errors were generally greater for males than for females 
in an evaluation of the Lee-Carter method and its variants using mortality data from 
Canada, Denmark, Italy, and Sweden. Shang (2015) found that forecast errors were 
greater for males than for females; however, the study found that CFDM produced 
relatively good forecasts of male mortality rates and suggested using CFDM as a 
benchmark method. It is important to note that the advantage of the CFDM method 
is not greater accuracy – rather, the method allows for the creation of coherent male 
and female mortality forecasts that do not diverge over longer forecast horizons. 
This is an important property given that mortality forecasts often need to be 
produced for longer horizons – even to 100 years (Woods/Dunstan 2014). We thus 
suggest that practitioners using the CFDM method be mindful that it may produce 
relatively poorer forecasts for females. Similarly, practitioners should be aware that 
not only are male mortality rates typically higher than female mortality rates, but 
forecasts of male mortality are generally more inaccurate.

Ensemble models, whilst not always more accurate than individual models, 
tend to reduce the frequency of bad forecasts (Grossman et al. 2022). However, Li 
(2022) found that simple averaging did not outperform individual base models. In 
this study, the ensemble models performed better than most of their individual 
constituent models. Whilst the S and U ensembles generally yielded robust results, 
the D ensemble did not perform particularly well, likely due to the inclusion of 
models with high errors (such as the CFDM model for females). These forecasts 
were notably different from those of the other individual models and could have 
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been identified and removed from the ensembles if a trimmed ensemble approach 
had been implemented (see Rayer et al. 2009). Future research should consider 
this accessible combination method, which has the potential to improve ensemble 
model reliability for practitioners.

4.2 The Pseudo-Projection Method for Mortality Forecast Evaluation

Unlike the sex-specific metrics presented here, the pseudo-projection method 
evaluates total deaths, providing a single, aggregate measure that connects mortality 
rate errors to population-level outcomes. While metrics such as life expectancy and 
ASDR errors highlight specific aspects of forecast performance, they do not fully 
capture the cumulative impact of mortality forecast errors on total deaths and thus 
older population forecasts, which are vital for planning in sectors such as healthcare 
and aged care. By offering this broader perspective, the pseudo-projection method 
complements traditional metrics and provides practitioners with actionable insights 
into the real-world implications of forecast errors.

The pseudo-projection results revealed notable differences in forecast 
performance across methods. For example, over a 30-year horizon, the APC model 
consistently outperformed others, with a mean error in total deaths of 7.7 percent 
across five forecasts. This was substantially lower than the next best methods: the 
S ensemble (13.6 percent) and EM (14.2 percent). The Plat model performed poorly, 
with a mean error of 22.9 percent, a result not immediately evident from other 
metrics. For instance, Plat’s ASDR errors over the same horizon were comparable to 
better-performing methods, averaging 0.036 for females and 0.023 for males, while 
its life expectancy errors were similarly unremarkable. However, Online Appendix 
B6 reveals Plat’s challenges with specific age groups − particularly females aged 
22-58 − likely contributing to its weaker total death projections. This illustrates 
how errors in specific age groups can compound to influence aggregate outcomes, 
demonstrating the pseudo-projection method’s ability to identify issues that other 
metrics might overlook.

These results also highlight the influence of male and female mortality on total 
deaths. Although deaths for males and females are calculated separately, their 
contributions to total errors reflect underlying differences in mortality rates and 
population sizes, with male mortality rates typically exhibiting greater variability. 
The APC model’s strong performance across all metrics suggests it handles these 
dynamics particularly well, while Plat’s high pseudo-projection errors underscore 
how even moderate ASDR inaccuracies for key age groups can cascade into larger 
aggregate errors. Future research could explore applying the pseudo-projection 
method to males and females separately, which may provide deeper insights into how 
sex-specific errors propagate to total deaths. Such an approach could complement 
aggregate evaluations and further enhance the method’s value for practitioners.
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5 Conclusion

This study evaluated nine individual and three ensemble mortality forecasting models 
by producing several retrospective forecasts for Australia. Results were evaluated in 
terms of errors in mortality rates, life expectancy at birth, life expectancy at age 65, 
and total numbers of deaths. A pseudo-projection method was used to evaluate 
mortality forecast accuracy in terms of total deaths. The methods evaluated in this 
study are implemented in widely used R packages (StMoMo and demography), which 
offer robust, well-documented, and user-friendly implementations. These packages 
allow even complex models such as APC and CFDM to be readily applied in real-world 
settings, bridging the gap between academic research and practical applications. 
By focusing on methods available through these established R packages, we hope 
that our evaluation supports practitioners in selecting methods that are not only 
accurate but also accessible and practical. The code used to create our forecasts is 
also made available, including for the EM model, which is not currently included in 
any of the popular R packages. In doing so, we hope to allow the findings of this 
paper to be relevant to practitioners. The main findings of the study are summarised 
here:

• The APC model performed strongly in our evaluation, particularly for older 
ages and longer forecast horizons, across several metrics for both males 
and females. These results suggest that the APC model is well-suited for 
long-term mortality forecasts. Practitioners may find the APC model a 
useful option for producing forecasts over extended horizons.

• The CBD method performed poorly, emphasising that it should not be 
used outside of its intended use for older populations.

• The inclusion of poor forecasts appeared to substantively decrease the 
accuracy of the ensemble models. Further investigation of the use of 
trimmed methods with a wide range of base models could prove useful. 

• The EM method produced reliable forecasts across all metrics. The 
robustness of the EM model may be linked to its incorporation of 
demographic constraints, such as ensuring that ASDRs do not decrease 
with age after the age of 15 years, and that male ASDRs remain higher 
than or equal to female ASDRs. These assumptions enhance its reliability, 
particularly for extended forecast horizons, and align with demographic 
realities.

• Errors in mortality forecasts tend to be greater for males than for females. 

• The use of methods which forecast male and female mortality rates 
together, such as CFDM, can contribute to relatively poorer performance 
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for forecasts of female mortality due to the relatively larger errors in the 
male mortality forecasts. 

• The pseudo-projection method revealed significant differences in the 
error in total deaths generated by the best and worst performing methods 
over a 30-year forecast horizon (7.7 percent vs 29.8 percent), with the Plat 
model amongst the weaker performers (22.9 percent). These issues were 
not immediately apparent from the other metrics, such as life expectancy or 
ASDR errors. By linking forecast errors to their cumulative impact on total 
deaths, the pseudo-projection method provided a clearer understanding 
of how forecasting methods perform in practical applications, offering 
guidance for population projections and policy planning.

• Several methods resulted in 30-year errors of up to 20 percent in 
aggregate forecasts of total deaths when evaluated using the pseudo-
projection method. This indicates that substantial errors can occur in long-
term mortality forecasts, even at the national level, and such significant 
discrepancies in total death projections could have significant impacts on 
overall planning and policy decisions that rely on these figures.

• The top performing methods for shorter forecast horizons were not 
necessarily the top performing methods for longer horizons. Furthermore, 
there is often little separating the top methods for the shorter horizons. 
Differences between methods become more evident with longer horizons. 
Given that practitioners are often required to produce long-term mortality 
forecasts, where practical, longer forecast horizons are helpful when 
evaluating and developing mortality forecast methods.

There are also several limitations that readers should consider in their 
interpretation of the results. First, our study focused on specific implementations of 
forecast models. However, these methods can be configured in many ways, and the 
specific configuration can impact performance. This is evident in the differences in the 
performance of the StMoMo and demography package implementations of the Lee-
Carter method, as well as between the LC_D and LC_Dc methods. We endeavoured 
to evaluate methods ‘off the shelf’ and to establish how they performed on raw 
data with minimal pre-processing. However, practitioners often employ additional 
techniques, such as smoothing and constraining, alongside forecasting methods. 
These steps can influence the results, and future evaluations should consider their 
impact on accuracy. 

Our simple data preparation approach, which involved smoothing over zeros, 
NAs, and infinite values, and limiting ASDRs to a maximum of 1, may have influenced 
results. As the various model implementations have different approaches to handling 
such values (e.g., models implemented with StMoMo functions assign zero weights 
to non-positive exposures and missing values), we selected a data preparation 
approach that prioritised interpretability and consistency across models. Future 
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evaluations could explore alternative approaches to data preparation to further 
refine performance comparisons. 

We only conducted our evaluation for the Australian context. For more 
generalisable recommendations, the methods need to be rigorously tested for long 
forecast horizons for multiple datasets. The outcomes of the evaluations will depend 
on the metrics chosen, and different metrics will support different use cases for the 
mortality forecasts. Some users also require indicators of forecast uncertainty, such 
as prediction intervals. This paper focuses on point forecast accuracy, which is vital 
for practitioners, but further research is required to address uncertainty measures 
comprehensively, including through the application and evaluation of probabilistic 
forecasting methods. 

Furthermore, practitioners will often consider features other than accuracy when 
selecting a forecasting method. These can include input data requirements, ease 
of application, and the coherence of male and female forecasts, amongst others. 
These practical considerations underscore the importance of ensuring forecast 
methods are not only accurate but also user-friendly and fit for purpose. However, 
there is often limited information available to researchers and package developers 
about how forecasts are used in practice and which aspects are most critical to 
users. Bridging this gap will require greater collaboration between researchers, 
developers, and practitioners to ensure forecast methods align with real-world 
needs. By focusing this evaluation on methods that are readily available in robust, 
widely used R packages, we hope to have provided practitioners with a practical 
resource for selecting models that are not only accurate but also accessible and 
adaptable to real-world applications.
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